Performance of Hybrid GANN in Comparison with Other Standalone Models on Dengue Outbreak Prediction

نویسندگان

  • Nor Azura Husin
  • Norwati Mustapha
  • Md Nasir Sulaiman
  • Razali Yaacob
  • Hazlina Hamdan
  • Masnida Hussin
چکیده

Corresponding Author: Nor Azura Husin Department of Computer Science, Faculty of Computer Science and Information Technology, University Putra Malaysia, Selangor, Malaysia Email: [email protected] Abstract: Early prediction of diseases especially dengue fever in the case of Malaysia, is very crucial to enable health authorities to develop response strategies and context preventive intervention programs such as awareness campaigns for the high risk population before an outbreak occurs. Some of the deficiencies in dengue epidemiology are insufficient awareness on the parameter as well as the combination among them. Most of the studies on dengue prediction use standalone models which face problem of finding the appropriate parameter since they need to apply try and error approach. The aim of this paper is to conduct experiments for determining the best network structure that has effective variable and fitting parameters in predicting the spread of the dengue outbreak. Four model structures were designed in order to attain optimum prediction performance. The best model structure was selected as predicting model to solve the time series prediction of dengue. The result showed that neighboring location of dengue cases was very effective in predicting the dengue outbreak and it is proven that the hybrid Genetic Algorithm and Neural Network (GANN) model significantly outperforms standalone models namely regression and Neural Network (NN).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron

Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...

متن کامل

Simulation of Dengue Outbreak Prediction

__ Neural Network Model (NNM), Hidden Markov Model (HMM) and Regression Model (RM) are developed to predict the spread of dengue outbreak in Malaysia. The case study covered dengue cases data from Selangor, which include seven mukims and eight administrative districts in year of 2004 and 2005. Specific criteria concerned are location, time (weeks) and intensity of dengue cases. Critical discuss...

متن کامل

Tracking Interval for Type II Hybrid Censoring Scheme

The purpose of this paper is to obtain the tracking interval for difference of expected Kullback-Leibler risks of two models under Type II hybrid censoring scheme. This interval helps us to evaluate proposed models in comparison with each other. We drive a statistic which tracks the difference of expected Kullback–Leibler risks between maximum likelihood estimators of the distribution in two diff...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCS

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016